Solitons in strongly driven discrete nonlinear Schrödinger-type models.
نویسندگان
چکیده
Discrete solitons in the Ablowitz-Ladik (AL) and discrete nonlinear Schrödinger (DNLS) equations with damping and strong rapid drive are investigated. The averaged equations have the forms of the parametric AL and DNLS equations. An additional type of parametric bright discrete soliton and cnoidal waves are found and the stability properties are analyzed. The analytical predictions of the perturbed inverse scattering transform are confirmed by the numerical simulations of the AL and DNLS equations with rapidly varying drive and damping.
منابع مشابه
Solitons for nearly integrable bright spinor Bose-Einstein condensate
Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation, soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates. A small disturbance of the integrability condition can be considered as a small correction to the integrable equation. By choosing appropriate perturbation, the soli...
متن کاملSolitons in a Parametrically Driven Damped Discrete Nonlinear Schrödinger Equation
We consider a parametrically driven damped discrete nonlinear Schrödinger (PDDNLS) equation. Analytical and numerical calculations are performed to determine the existence and stability of fundamental discrete bright solitons. We show that there are two types of onsite discrete soliton, namely onsite type I and II. We also show that there are four types of intersite discrete soliton, called int...
متن کاملTemporally-Periodic Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation
Temporally-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation – p.
متن کاملThresholdless discrete surface solitons and stability switchings in periodically curved waveguides.
We study numerically a parametrically driven discrete nonlinear Schrödinger equation modeling periodically curved waveguide arrays. We show that discrete surface solitons persist, but their threshold power is altered by the drive. There are critical drives at which the threshold values vanish. We also show that parametric drives can create resonance with a phonon making a barrier for discrete s...
متن کاملNonlinear Schrödinger lattices I: Stability of discrete solitons
We consider the discrete solitons bifurcating from the anti-continuum limit of the discrete nonlinear Schrödinger (NLS) lattice. The discrete soliton in the anti-continuum limit represents an arbitrary finite superposition of in-phase or anti-phase excited nodes, separated by an arbitrary sequence of empty nodes. By using stability analysis, we prove that the discrete solitons are all unstable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2007